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Narrow Escape, Part I
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A Brownian particle with diffusion coefficient D is confined to a bounded domain
� by a reflecting boundary, except for a small absorbing window ∂�a . The mean
time to absorption diverges as the window shrinks, thus rendering the calculation of
the mean escape time a singular perturbation problem. In the three-dimensional case,
we construct an asymptotic approximation when the window is an ellipse, assuming
the large semi axis a is much smaller than |�|1/3 (|�| is the volume), and show that
the mean escape time is Eτ ∼ |�|

2π Da K (e), where e is the eccentricity and K (·) is the
complete elliptic integral of the first kind. In the special case of a circular hole the
result reduces to Lord Rayleigh’s formula Eτ ∼ |�|

4aD , which was derived by heuristic
considerations. For the special case of a spherical domain, we obtain the asymptotic
expansion Eτ = |�|

4aD [1 + a
R log R

a + O( a
R )]. This result is important in understanding

the flow of ions in and out of narrow valves that control a wide range of biological
and technological function. If � is a two-dimensional bounded Riemannian manifold

with metric g and ε = |∂�a |g/|�|g � 1, we show that Eτ = |�|g
Dπ

[log 1
ε

+ O(1)]. This
result is applicable to diffusion in membrane surfaces.
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1. INTRODUCTION

We consider the exit problem of a Brownian motion from a bounded domain, whose
boundary is reflecting, except for a small absorbing window. The narrow escape
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problem is to calculate the mean time to absorption. Brownian motion through nar-
row regions controls flow in many non-equilibrium systems, from fluidic valves to
transistors and ion channels, the protein valves of biological membranes.(1) Indeed,
one can view an ion channel as the ultimate nanovalve—nearly picovalve—in
which macroscopic flows are controlled with atomic resolution. It is particu-
larly important in particle simulations of the permeation process(2−6) that capture
much more detail than continuum models. In this context, the narrow escape
problem appeared in the calculation of the equilibration time of diffusion be-
tween two chambers connected by a capillary.(7) The narrow escape problem
comes up, among others, in models of diffusion of proteins in membranes(8)

[and references therein], in the diffusion of calcium ions in dendritic spines,(9−11)

and in the calculation of forward binding rates in chemical reactions in micro-
domains.(12)

The narrow escape problem is equivalent to the solution of an inhomogeneous
mixed Neumann-Dirichlet boundary value problem for the Poisson equation.(13,14)

The problem has been considered in the literature in only a few special cases,
beginning with Lord Rayleigh (in the context of acoustics), who found the flux
through a small hole by using a result of Helmholtz.(15) He stated(16) (p. 176)
“Among different kinds of channels an important place must be assigned to those
consisting of simple apertures in unlimited plane walls of infinitesimal thickness.
In practical applications it is sufficient that a wall be very thin in proportion to
the dimensions of the aperture, and approximately plane within a distance from
aperture large in proportion to the same quantity.” More recently, Rayleigh’s result
was shown to fit the MFPT obtained from Brownian dynamics simulations.(17)

Another result was presented in Ref. 8, where a two-dimensional narrow escape
problem was considered and whose method is generalized here.

The mixed boundary value problems of classical electrostatics (e.g., the
electrified disk problem(18)), elasticity (punch problems), diffusion and conduc-
tance theory, hydrodynamics, and acoustics were solved, by and large, for spe-
cial geometries by separation of variables. In axially symmetric geometries this
method leads to a dual series or to integral equations that can be solved by special
techniques.(19−23) The special case of asymptotic representation of the solution
of the corner problem for small Dirichlet and large Neumann boundaries was not
done for general domains. The first attempt in this direction seems to be Ref. 8.

One mathematical aspect of the mixed Neumann-Dirichlet boundary value
problem (BVP) for the Poisson equation, also known as the corner problem, is that
the solution has singularities at the boundary of the hole.(24−26) Related problems
of narrow escape concern absorption in a small component of the boundary,
disjoint from the reflecting component were considered in Refs. 27 [and references
therein], 28. Kolmogorov, Pontryagin, and Mishchenko calculated the probability
distribution of the first passage time of a diffusing particle from a point in R

n
to a

given (moving or stationary) small sphere of radius ε in Ref. 28 They obtained an



Narrow Escape, Part I 439

infinite MFPT. These results do not solve the problem considered here. They differ
from the narrow escape problem in that there is no singularity at the boundary and
there is no boundary layer.

The narrow escape problem does not seem to fall within the theory of large
deviations.(29) It is different from Kolmogorov’s exit problem(30) of a diffusion
process with small noise from an attractor of the drift (e.g., a stable equilibrium or
limit cycle) in that the narrow escape problem has no large and small coefficients
in the equation. The singularity of Kolmogorov’s problem is the degeneration of
a second order elliptic operator into a first order operator in the limit of small
noise, whereas the singularity of the narrow escape problem is the degeneration
of the mixed BVP to a Neumann BVP on the entire boundary. There exist precise
asymptotic expansions of Eτ for Kolmogorov’s exit problem, including error
estimates (see, e.g.,(31,32), which show that the MFPT grows exponentially with
decreasing noise. In contrast, the narrow escape time grows algebraically rather
than exponentially, as the window shrinks.

The first main result of this paper is a derivation of the leading order term in
the expansion of the MFPT of a Brownian particle with diffusion coefficient D,
from a general domain of volume |�| to an elliptical hole of large semi axis a that
is much smaller than |�|1/3,

Eτ ∼ |�|
2π Da

K (e), (1.1)

where e is the eccentricity of the ellipse, and K (·) is the complete elliptic integral
of the first kind. In the special case of a circular hole (1.1) reduces to

Eτ ∼ |�|
4aD

. (1.2)

Eq. (1.1) shows that the MFPT depends on the shape of the hole, and not just
on its area. This result was known to Lord Rayleigh,(16) who considered the
problem of the electrified disk (which he knew was equivalent to finding the flow
of an incompressible fluid through a channel and to the problem of finding the
conductance of the channel), who reduced the problem to that of solving an integral
equation for the flux density through the hole. The solution of the integral equation,
which goes back to Helmholtz(15) and is discussed in Ref. 22, is proportional to
(a2 − ρ2)−1/2 in the circular case, where ρ is the distance from the center of
the hole.(18−20) Note that Eqs. (1.1) and (1.2) are leading order approximations
and do not contain an error estimate. We prove (1.1) by using the singularity
properties of Neumann’s function for three-dimensional domains, in a manner
similar to that used in Ref. 8 for two-dimensional problems. The leading order
term is the solution of Helmholtz’s integral equation.(15) The general result for a
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two-dimensional Riemannian manifold with metric g is

Eτ = |�|g
π D

[
log

1

ε
+ O(1)

]
for ε � 1,

where |�|g is the Riemannian area of the domain.
Our second main result is a derivation of the second term and error estimate

for a ball of radius R with a small circular hole of radius a in the boundary,

Eτ = |�|
4aD

[
1 + a

R
log

R

a
+ O

( a

R

)]
. (1.3)

Eq. (1.3) contains both the second term in the asymptotic expansion of the MFPT
and an error estimate. We use Collins’ method(33,34) of solving dual series of
equations and expand the resulting solutions for small ε = a/R. The estimate of
the error term, which turns out to be O(ε log ε), seems to be a new result. An error
estimate for Eq. (1.1) for a general domain is still an open problem. We conjecture
that it is O(ε log ε), as is the case for the ball. If the absorbing window touches
a singular point of the boundary, such as a corner or cusp, the singularity of the
Neumann function changes and so do the asymptotic results. In three dimensions
the class of isolated singularities of the boundary is much richer than in the plane,
so the methods of Ref. 35 cannot be generalized in a straightforward manner to
three dimensions. We postpone the investigation of the three-dimensional problem
of the MFPT to windows with singular points in their boundaries to a future paper.
In Section 2 we derive a leading order approximation to the MFPT for a general
two- and three-dimensional domain with a general small window. The leading
order term is expressed in terms of a solution to Helmholtz’s integral equation,
which is solved explicitly for an elliptical window in three dimensions. In Section
3 we obtain two terms in the asymptotic expansion of the MFPT from a ball with
a circular window and an error estimate. Finally, we present a summary and list
some applications in Section 4. This is the first paper in a series of three, the second
of which considers the narrow escape problem from a bounded simply connected
planar domain, and the third of which considers the narrow escape problem from
a bounded domain with boundary with corners and cusps on a two-dimensional
Riemannian manifold.

2. LEADING ORDER ASYMPTOTICS

A Brownian particle diffuses freely in a bounded domain � ⊂ R
n

(n = 2, 3),
whose boundary ∂� is sufficiently smooth (the analysis in higher dimensions is
similar to that for n = 3). The trajectory of the Brownian particle, denoted x(t), is
reflected at the boundary, except for a small hole ∂�a , where it is absorbed. The
reflecting part of the boundary is ∂�r = ∂� − ∂�a . The lifetime of the particle
in � is the first passage time τ of the Brownian particle from any point x ∈ � to
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the absorbing boundary ∂�a . The MFPT,

v(x) = E[τ | x(0) = x],

is finite under quite general conditions.(14) As the size (e.g., the diameter) of the
absorbing hole decreases to zero, but that of the domain remains finite, we assume
that the MFPT increases indefinitely. A measure of smallness can be chosen as
the ratio between the surface area of the absorbing boundary and that of the entire
boundary,

ε =
( |∂�a|

|∂�|
)1/(n−1)

� 1,

(see, however, a pathological example in Appendix C). The MFPT v(x) satisfies
the mixed boundary value problem(14)

�v(x) = − 1

D
, for x ∈ �, (2.1)

v(x) = 0, for x ∈ ∂�a, (2.2)

∂v(x)

∂n(x)
= 0, for x ∈ ∂�r , (2.3)

where D is the diffusion coefficient. If � is a subset of a two-dimensional Rie-
mannian manifold, the Laplace operator is replaced with the Laplace-Beltrami
operator. The compatibility condition∫

∂�a

∂v(x(S))

∂n
d S = −|�|

D
, (2.4)

is obtained by integrating (2.1) over � and using (2.2) and (2.3).
According to our assumptions v(x) → ∞ as the size of the hole decreases

to zero, e.g., as ε → 0, except in a boundary layer near ∂�a , because the com-
patibility condition (2.4) fails in the limit. Our purpose is to find an asymptotic
approximation to v(x) in this limit.

2.1. The Neumann Function and Integral Equations

To calculate the MFPT v(x), we use the Neumann function N (x, ξ ) (see Refs. [8,
27], which is a solution of the boundary value problem

�x N (x, ξ ) = −δ(x − ξ ), for x, ξ ∈ �, (2.5)

∂ N (x, ξ )

∂n(x)
= − 1

|∂�| , for x ∈ ∂�, ξ ∈ �,
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and is defined up to an additive constant. Green’s identity gives∫
�

[N (x, ξ )�v(x) − v(x)�N (x, ξ )] dx

=
∫

∂�

[
N (x(S), ξ )

∂v(x(S))

∂n
− v(x(S))

∂ N (x(S), ξ )

∂n

]
d S

=
∫

∂�

N (x(S), ξ )
∂v(x(S))

∂n
d S + 1

|∂�|
∫

∂�

v(x(S)) d S.

On the other hand, Eqs. (2.1) and (2.5) imply that∫
�

[N (x, ξ )�v(x) − v(x)�N (x, ξ )] dx = v(ξ ) − 1

D

∫
�

N (x, ξ ) dx,

hence

v(ξ ) − 1

D

∫
�

N (x, ξ ) dx (2.6)

=
∫

∂�

N (x(S), ξ )
∂v(x(S))

∂n
d S + 1

|∂�|
∫

∂�

v(x(S)) d S.

Note that the second integral on the right hand side of eq. (2.6) is an additive
constant. The integral

C = 1

|∂�|
∫

∂�

v(x(S)) d S, (2.7)

is the average of the MFPT on the boundary. Now Eq. (2.6) takes the form

v(ξ ) = 1

D

∫
�

N (x, ξ ) dx +
∫

∂�a

N (x(S), ξ )
∂v(x(S))

∂n
d S + C, (2.8)

which is an integral representation of v(ξ ). We define the boundary flux density

g(S) = ∂v(x(S))

∂n
, (2.9)

choose ξ ∈ ∂�a , and use the boundary condition (2.2) to obtain the equation

0 = 1

D

∫
�

N (x, ξ ) dx +
∫

∂�a

N (x(S), ξ )g(S) d S + C, (2.10)

for all ξ ∈ ∂�a . Eq. (2.10) is an integral equation for g(S) and C . To construct
an asymptotic approximation to the solution, we note that the first integral in Eq.
(2.10) is a regular function of ξ on the boundary. Indeed, due to symmetry of the
Neumann function, we have from (2.5)

�ξ

∫
�

N (x, ξ ) dx = −1 for ξ ∈ � (2.11)



Narrow Escape, Part I 443

and

∂

∂n(ξ )

∫
�

N (x, ξ ) dx = − |�|
|∂�| for ξ ∈ ∂�. (2.12)

Eq. (2.11) and the boundary condition (2.12) are independent of the hole ∂�a ,
so they define the integral as a regular function, up to an additive constant, also
independent of ∂�a .

The fact that for all x ∈ �, away from ∂�a , the MFPT v(x) increases to
infinity as the size of the hole decreases and Eq. (2.7) imply that C → ∞ as the
size of the hole decreases to zero. This means that for ξ ∈ ∂�a the second integral
in Eq. (2.10) must also become infinite in this limit, because the first integral is
independent of ∂�a . Therefore, the integral equation (2.10) is to leading order∫

∂�a

N (x(S), ξ ))g0(S) d S = −C0 for ξ ∈ ∂�a, (2.13)

where g0(S) is the first asymptotic approximation to g(S) and C0 is the first
approximation to the constant C .

The Neumann function in three dimensions has the form(36)

N (x, ξ ) = 1

4π |x − ξ | + vS(x, ξ ), (2.14)

where vS (x, ξ ) is a regular harmonic function of x ∈ � and of ξ ∈ �. It follows
that only the singular part of the Neumann function contributes to the leading
order, so we obtain the integral equation

1

2π

∫
∂�a

g0(x)

|x − ξ | d Sx = −C0, (2.15)

where C0 is a constant, which represents the first approximation to the mean first
passage time (MFPT). It is also the electrostatic capacity of the window.(18) Note
that the singularity of the Neumann function at the boundary is twice as large
as it is inside the domain, due to the contribution of the regular part (the “image
charge”). For that reason the factor 1

4π
of Eq. (2.14) was replaced by 1

2π
. In general,

the integral Eq. (2.15) has no explicit solution, and should be solved numerically.
An important consequence of Eq. (2.8) is that

lim
ε→0

v(ξ )

C
= 1 (2.16)

uniformly for ξ outside a fixed neighborhood N of ∂�a . Indeed, for ξ outside
N and x ∈ ∂�a the Neumann function N (x, ξ ) is uniformly bounded as ε → 0.
Furthermore, ∂v(x)

∂n < 0 for x ∈ ∂�a , so in view of the compatibility condition

(2.4), the integral
∫
∂�a

N (x(S), ξ ) ∂v(x(S))
∂n d S is uniformly bounded for ξ �∈ N
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and so is the integral 1
D

∫
�

N (x, ξ ) dx in (2.8), while v(ξ ), C → ∞. Eq. (2.16)
means that outside the boundary layer the MFPT v(·) is asymptotically constant.

If � is a subset of a two-dimensional Riemannian manifold, the Neumann
function exists, as long as the compatibility condition holds. The Neumann func-
tion N (x, y) is constructed by using a parametrix H (x, y),(37)

H (x, y) = −h(d(x, y))

2π
log d(x, y), (2.17)

where d(x, y) is the Riemannian distance between x and y and h(·) is a regular
function with compact support, equal to 1 in a neighborhood of 0. As a conse-
quence of the construction N (x, y) − H (x, y) is a regular function on �. It can
be written as

N (x, ξ ) = − 1

2π
log d(x, ξ ) + vN (x, ξ ), for x ∈ Bδ(ξ ), (2.18)

where Bδ(ξ ) is a geodesic ball of radius δ centered at ξ and vN (x; ξ ) is a regular
function. We consider a normal geodesic coordinate system (x, y) at the origin,
such that one of the coordinates coincides with the tangent coordinate to ∂�a . We
choose unit vectors e1, e2 as an orthogonal basis in the tangent plane at 0 so that
for any vector field X = x1e1 + x2e2, the metric tensor g can be written as

gi j = δi j + ε2
∑

kl

akl
i j xk xl + o(ε2), (2.19)

where |xk | ≤ 1, because ε is small. It follows that for x, y inside the geodesic ball
or radius ε, centered at the origin, d(x, y) = dE (x, y) + O(ε2), where dE is the
Euclidean metric. We can now use the computation given in the Euclidean case in
Ref. 8, which gives that for x outside a boundary layer

E[τ | x] = u(x) = |�|g
π D

[
log

1

ε
+ O(1)

]
for ε � 1. (2.20)

2.2. Elliptic Hole in 3D

When the hole ∂�a is an ellipse, the solution of the integral Eq. (2.15) is
known.(16,22) Specifically, assuming the ellipse is given by

x2

a2
+ y2

b2
= 1, z = 0, (b ≤ a),

the solution is

g0(x) = g̃0√
1 − x2

a2
− y2

b2

, (2.21)
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where g̃0 is a constant (to be determined below). The proof, originally given in
Ref. 15, is reproduced in Appendix B. To determine the value of the constant g̃0,
we apply the compatibility condition (2.4). Using the value

∫
∂�a

g0(x) d Sx =
∫ a

−a
dx

∫ b
√

1− x2

a2

−b
√

1− x2

a2

g̃0 dy√
1 − x2

a2
− y2

b2

= 2πabg̃0 (2.22)

and the compatibility condition (2.4), we obtain

g̃0 = − |�|
2π Dab

. (2.23)

Hence, by Eq. (B.5), the leading order approximation to C is

C0 = − 1

2π

∫
∂�a

g0(x)

|x − y| d Sx = |�|
2π Da

K (e), (2.24)

where K (·) is the complete elliptic integral of the first kind, and e is the eccentricity
of the ellipse,

e =
√

1 − b2

a2
. (2.25)

In other words, the MFPT from a large cavity of volume |�| through a small
elliptic hole is to leading order

Eτ (a, b) ∼ |�|
2π Da

K (e). (2.26)

For example, in the case of a circular hole, we have e = 0 and K (0) = π
2 , so that

Eτ (a, a) ∼ |�|
4Da

= O

(
1

ε

)
, (2.27)

provided

|�|2/3

|∂�| = O(1) for ε � 1.

Eq. (2.27) was used in Refs. [7, 17]. If the mouth of the channel is not circular, the
MFPT is different. Equation (2.27) indicates that a Brownian particle that tries to
leave the domain “sees” finer details in the geometry of the hole and the domain
than just the quotient of the surface areas.

3. EXPLICIT COMPUTATIONS FOR THE SPHERE

The analysis of Section 2 is not easily extended to the computation, or even merely
the estimation of the next term in the asymptotic approximation of the MFPT. The
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explicit results for the particular case of escape from a ball through a small circular
hole gives an idea of the order of magnitude of the second term and the error in
the asymptotic expansion of the MFPT. If the domain � is a ball, the method of
Refs. [19–21, 33, 34] can be used to obtain a full asymptotic expansion of the
MFPT. We consider the motion of a Brownian particle inside a ball of radius R.
The particle is reflected at the sphere, except for a small cap of radius a = εR and
surface area 4π R2 sin2 ε

2 , where it exits the ball. We assume ε � 1. The MFPT
v(r, θ, φ) satisfies the mixed boundary value problem for Poisson’s equation in the
ball,(14)

�v(r, θ, φ) = −1, for r < R, 0 ≤ θ ≤ π, 0 ≤ φ < 2π,

v(r, θ, φ)

∣∣∣∣
r=R

= 0, for 0 ≤ θ < ε, 0 ≤ φ < 2π, (3.1)

∂v(r, θ, φ)

∂r

∣∣∣∣
r=R

= 0, for ε ≤ θ ≤ π, 0 ≤ φ < 2π,

The diffusion coefficient has been chosen to be D = 1. Due to the cylin-
drical symmetry of the problem, the solution is independent of the an-
gle φ, that is, v(r, θ, φ) = v(r, θ ), so the system (3.1) can be written
as

�v(r, θ ) = −1, for r < R, 0 ≤ θ ≤ π,

v(r, θ )

∣∣∣∣
r=R

= 0, for 0 ≤ θ < ε,

∂v(r, θ )

∂r

∣∣∣∣
r=R

= 0, for ε ≤ θ ≤ π,

where the Laplacian is given by

�v(r, θ ) = 1

r2

∂

∂r

(
r2 ∂v

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂v

∂θ

)
.

The function f (r, θ ) = R2 − r2

6
is the solution of the boundary value problem

� f = −1, for r < R,

f

∣∣∣∣
r=R

= 0.

In the decomposition v = u + f , the function u(r, θ ) satisfies the mixed Dirichlet-
Neumann boundary value problem for the Laplace equation

�u(r, θ ) = 0, for r < R, 0 ≤ θ ≤ π,
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u(r, θ )

∣∣∣∣
r=R

= 0, for 0 ≤ θ < ε, (3.2)

∂u(r, θ )

∂r

∣∣∣∣
r=R

= R

3
, for ε ≤ θ ≤ π.

Separation of variables suggests that

u(r, θ ) =
∞∑

n=0

an

( r

R

)n
Pn(cos θ ), (3.3)

where Pn(cos θ ) are the Legendre polynomials, and the coefficients {an} are to be
determined from the boundary conditions

u(r, θ )

∣∣∣∣
r=R

=
∞∑

n=0

an Pn(cos θ ) = 0, 0 ≤ θ < ε, (3.4)

∂u(r, θ )

∂r

∣∣∣∣
r=R

=
∞∑

n=1

nan Pn(cos θ ) = R2

3
, ε ≤ θ ≤ π. (3.5)

Obviously, the first coefficient a0 in the expansion (3.3) is the average of u(r, θ )
with respect to θ . Since u(r, θ ) differs from the MFPT v(r, θ ) by O(1) as ε → 0,
we see that a0 → ∞ and v(r, θ )/a0 → 1 outside a boundary layer around the
small window (see (2.16)).

Eqs. (3.4), (3.5) are dual series equations of the mixed boundary value prob-
lem at hand, and their solution results in the solution of the boundary value problem
(3.2). Dual series equations of the form

∞∑
n=0

an Pn(cos θ ) = 0, for 0 ≤ θ < ε, (3.6)

∞∑
n=0

(2n + 1)an Pn(cos θ ) = G(θ ), for ε ≤ θ ≤ π (3.7)

are solved in [Ref. 19, Eqs.(5.5.12)–(5.5.14), (5.6.12)]. However, the dual series
Eqs. (3.6)–(3.7) are different from Eqs. (3.4)–(3.5). The factor 2n + 1 that appears
in Eq. (3.7) is replaced by n in Eq. (3.5). What seems as a slight difference turns
out to make our task much harder. The factor 2n + 1 fits much more easily into the
infinite sums (3.6)–(3.7), because it is the normalization constant of the Legendre
polynomials.
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3.1. Collins’ Method

The solution of dual relations of the form Eqs. ((3.4)–(3.5)) (see Ref. 19
(5.6.19)–(5.6.20)) is discussed in Refs. 33, 34. Specifically, assume that for given
functions G(θ ) and F(θ ) we have the representation

∞∑
n=0

(1 + Hn)bnT −m
m+n(cos θ ) = F(θ ), for 0 ≤ θ < ε,

∞∑
n=0

(2n + 2m + 1)bnT −m
m+n(cos θ ) = G(θ ), for ε < θ ≤ π,

where T −m
m+n are Ferrer’s associated Legendre polynomials(39,40) and {Hn} is a given

series that is O(n−1) as n → ∞. Then for m = 0, we have

∞∑
n=0

(1 + Hn)bn Pn(cos θ ) = F(θ ), for 0 ≤ θ < ε, (3.8)

∞∑
n=0

(2n + 1)bn Pn(cos θ ) = G(θ ), for ε < θ ≤ π. (3.9)

Setting a0 = b0, an = 2n + 1

2n
bn, n ≥ 1 in Eqs. (3.4)–(3.5) results in

∞∑
n=0

(1 + Hn)bn Pn(cos θ ) = 0, for 0 ≤ θ < ε, (3.10)

∞∑
n=0

(2n + 1)bn Pn(cos θ ) = 2R2

3
+ b0, for ε ≤ θ ≤ π. (3.11)

Eqs. (3.10)–(3.11) are equivalent to (3.8)–(3.9) with H0 = 0, Hn = 1

2n
, n ≥ 1,

F(θ ) = 0, and G(θ ) = 2R2

3
+ b0. Collins’ method of solution consists in finding

an integral equation for the function

h(θ ) =
∞∑

n=0

(2n + 1)bn Pn(cos θ ), for 0 ≤ θ < ε,

so that

bn = 1

2

∫ ε

0
h(α)Pn(cos α) sin α dα + 1

2

∫ π

ε

G(α)Pn(cos α) sin α dα.
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Substituting into Eq. (3.8), with F(θ ) ≡ 0, we find for 0 ≤ θ < ε that

0 = 1

2

∫ ε

0
h(α)

∞∑
n=0

(1 + Hn)Pn(cos α)Pn(cos θ ) sin α dα

+1

2

∫ π

ε

G(α)
∞∑

n=0

(1 + Hn)Pn(cos α)Pn(cos θ ) sin α dα. (3.12)

3.2. The Asymptotic Expansion

To facilitate the calculations, we consider first the case Hn = 0 for all n. Then we
will show that the leading order term obtained for this case is the same as that for
the case Hn �= 0. In the latter case, we obtain the first correction to the leading
order term and an estimate of the remaining error.

3.2.1. The Leading Order Term When Hn ≡ 0

We will now sum the series (3.12) in the case Hn ≡ 0. First, we recall Mehler’s
integral representation for the Legendre polynomials,(38,41)

Pn(cos θ ) =
√

2

π

∫ θ

0

cos(n + 1
2 )u du√

cos u − cos θ
, (3.13)

and the identity(19)

√
2

∞∑
n=0

Pn(cos α) cos

(
n + 1

2

)
u = H (α − u)√

cos u − cos α
, (3.14)

where H (x) is the Heaviside unit step function. Then we obtain for u < θ < ε < α,

1

2

∫ π

ε

G(α)
∞∑

n=0

Pn(cos α)Pn(cos θ ) sin α dα

= 1

2

∫ π

ε

G(α)
∞∑

n=0

Pn(cos α)

√
2

π

∫ θ

0

cos(n + 1
2 )u du√

cos u − cos θ
sin α dα

= 1

2π

∫ θ

0

du√
cos u − cos θ

∫ π

ε

G(α) sin α dα√
cos u − cos α

. (3.15)

Similarly,

1

2

∫ ε

0
h(α)

∞∑
n=0

Pn(cos α)Pn(cos θ ) sin α dα
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= 1

2π

∫ θ

0

du√
cos u − cos θ

∫ ε

u

h(α) sin α dα√
cos u − cos α

. (3.16)

Hence, ∫ θ

0

du√
cos u − cos θ

∫ ε

u

h(α) sin α dα√
cos u − cos α

=

−
∫ θ

0

du√
cos u − cos θ

∫ π

ε

G(α) sin α dα√
cos u − cos α

. (3.17)

Eq. (3.17) means that the Abel transforms(42) of two functions are the same, so
that ∫ ε

u

h(α) sin α dα√
cos u − cos α

= −
∫ π

ε

G(α) sin α dα√
cos u − cos α

, (3.18)

because the Abel transform is uniquely invertible. Eq. (3.18) is an Abel-type
integral equation, whose solution is given by

h(θ ) sin θ = 1

π

d

dθ

∫ ε

θ

sin u du√
cos θ − cos u

∫ π

ε

G(α) sin α dα√
cos u − cos α

, (3.19)

or

h(θ ) = − 2

sin θ

d

dθ

∫ ε

θ

H (u) sin u du√
cos θ − cos u

, (3.20)

where

H (u) = −G(u, ε), (3.21)

and

G(u, ε) = 1

2π

∫ π

ε

G(θ ) sin θ dθ√
cos u − cos θ

. (3.22)

The dual integral Eqs. (3.10)–(3.11) define G(θ ) = 2R2

3
+ b0, so that

G(ψ, φ) = 1

2π

∫ π

φ

(
2R2

3
+ b0

)
sin θ dθ√

cos ψ − cos θ

=
(

2R2

3
+ b0

)
1

π

√
cos ψ − cos θ

∣∣∣∣
π

θ=φ

(3.23)

=
(

2R2

3
+ b0

)
1

π

(√
2 cos

ψ

2
−

√
cos ψ − cos φ

)
, for ψ < φ.



Narrow Escape, Part I 451

In particular, setting n = 0 in Eq. (3.12) and using Eq. (3.20), gives

b0 = 1

2

∫ ε

0
h(α) sin α dα + 1

2

∫ π

ε

(
2R2

3
+ b0

)
sin α dα

=
√

2
∫ ε

0
H (ψ) cos

ψ

2
dψ +

(
2R2

3
+ b0

)
cos2 ε

2
. (3.24)

Integrating Eq. (3.23), we obtain

√
2

∫ ε

0
G(ψ, ε) cos

ψ

2
dψ

=
(

2R2

3
+ b0

) √
2

π

∫ ε

0

(√
2 cos

ψ

2
−

√
cos ψ − cos ε

)
cos

ψ

2
dψ

=
2R2

3
+ b0

π
(ε + sin ε) −

(
2R2

3
+ b0

)
4

π

∫ sin
ε

2
0

s2 ds√
sin2

ε

2
− s2

=
2R2

3
+ b0

π
(ε + sin ε) −

(
2R2

3
+ b0

)
sin2 ε

2
. (3.25)

Combining Eqs. (3.24) and (3.25) gives

b0 = 2R2

3

(
π

ε + sin ε
− 1

)
= 2R2

3

( π

2ε
+ O(1)

)
= |�|

4a

(
1 + O

( a

R

))
,

(3.26)

where |�| = 4π R3

3
is the volume of the ball, and a = Rε is the radius of the hole.

3.2.2. The Case Hn �= 0

The asymptotic expression (3.26) for b0, was derived under the simplifying
assumption that Hn ≡ 0. However, we are interested in the value of b0 which
is produced by the solution of the dual series equations (3.10)–(3.11), where
Hn = 1

2n . We sum the series (3.12) by the identities

1

2

∫ ε

0
h(α)

∞∑
n=0

Hn Pn(cos α)Pn(cos θ ) sin α dα

= 1

2

∫ ε

0
h(α)

∞∑
n=0

Hn

√
2

π

∫ α

0

cos(n + 1
2 )v dv√

cos v − cos α

√
2

π

∫ θ

0

cos(n + 1
2 )u du√

cos u − cos θ
sin α dα
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= 1

2π

∫ ε

0
h(α) sin α dα

∫ α

0

dv√
cos v − cos α

∫ θ

0

K (u, v) du√
cos u − cos θ

= 1

2π

∫ θ

0

du√
cos u − cos θ

∫ ε

0
K (u, v) dv

∫ ε

v

h(α) sin α dα√
cos v − cos α

, (3.27)

where

K (u, v) = 2

π

∞∑
n=0

Hn cos

(
n + 1

2

)
u cos

(
n + 1

2

)
v

= − cos 1
2 (v + u)

2π
log 2

∣∣∣∣sin
1

2
(v + u)

∣∣∣∣
− cos 1

2 (v − u)

2π
log 2

∣∣∣∣sin
1

2
(v − u)

∣∣∣∣
+ v + u − π

4π
sin

1

2
(v + u) + v − u − π

4π
sin

1

2
(v − u). (3.28)

Similarly,

1

2

∫ π

ε

G(α)
∞∑

n=0

Hn Pn(cos α)Pn(cos θ ) sin α dα

= 1

2π

∫ π

ε

G(α) sin α dα

∫ α

0

dv√
cos v − cos α

∫ θ

0

K (u, v) du√
cos u − cos θ

= 1

2π

∫ θ

0

du√
cos u − cos θ

∫ π

ε

G(α) sin α dα

∫ α

0

K (u, v) dv√
cos v − cos α

.

(3.29)

Substituting Eqs. (3.15), (3.16), (3.27), and (3.29) into Eq. (3.12) yields

0 = 1

2π

∫ θ

0

du√
cos u − cos θ

∫ ε

u

h(α) sin α dα√
cos u − cos α

+ 1

2π

∫ θ

0

du√
cos u − cos θ

∫ ε

0
K (u, v) dv

∫ ε

v

h(α) sin α dα√
cos v − cos α

+ 1

2π

∫ θ

0

du√
cos u − cos θ

∫ π

ε

G(α) sin α dα√
cos u − cos α

+ 1

2π

∫ θ

0

du√
cos u − cos θ

∫ π

ε

G(α) sin α dα

∫ α

0

K (u, v) dv√
cos v − cos α

,
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which is again an Abel-type integral equation. Inverting the Abel transform,(42)

we obtain

0 = 1

2π

∫ ε

u

h(α) sin α dα√
cos u − cos α

+ 1

2π

∫ ε

0
K (u, v) dv

∫ ε

v

h(α) sin α dα√
cos v − cos α

(3.30)

+ 1

2π

∫ π

ε

G(α) sin α dα√
cos u − cos α

+ 1

2π

∫ π

ε

G(α) sin α dα

∫ α

0

K (u, v) dv√
cos v − cos α

.

Setting

H (u) = 1

2π

∫ ε

u

h(α) sin α dα√
cos u − cos α

, (3.31)

we invert the Abel transform (3.31) to obtain

h(θ ) = − 2

sin θ

d

dθ

∫ ε

θ

sin u H (u) du√
cos θ − cos u

. (3.32)

Writing

J (u) = H (u) + G(u, ε), (3.33)

Eq. (3.30) becomes

J (u) +
∫ ε

0
K (u, v)J (v) dv = M(u), (3.34)

where the free term M(u) is given by

M(u) = −
∫ π

ε

K (u, v)G(v, v) dv. (3.35)

Eq. (3.34) is a Fredholm integral equation for J .

3.2.3. The Second Term and the Remaining Error: L2 Estimates

Eqs. (3.24), (3.25), and (3.33) give that

b0 + 2R2

3
= 2R2

3

π

ε + sin ε
+

√
2π

ε + sin ε

∫ ε

0
J (u) cos

u

2
du, (3.36)

where J is the solution of the Fredholm Eq. (3.34). In this section we show that
√

2π

ε + sin ε

∫ ε

0
J (u) cos

u

2
du =

(
b0 + 2R2

3

) (
ε log

1

ε
+ O(ε)

)
,

therefore the last term in Eq. (3.36) should be considered a small correction to the
leading order term R2

3
π
ε

, obtained in Section 3.2.2 This confirms the intuitive results
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of, Refs. [7, 17], and gives an estimate on the error term. Due to the logarithmic
singularity of the function K (u, v) (see (3.28)) the operator K , defined by

K f (u) =
∫ ε

0
K (u, v) f (v) dv, (3.37)

maps L2[0, ε] into L2[0, ε]. In Appendix A we derive the estimate

‖K‖2 ≤
√

30

2π
ε log

1

ε
, (3.38)

for ε � 1. Better estimates can be found; however we settle for this rough estimate
that suffices for our present purpose.

3.2.4. Estimate of ‖J‖2

In terms of the operator K , Eq. (3.34) can be written as

J = M − K J. (3.39)

The triangle inequality yields

‖J‖2 ≤ ‖M‖2 + ‖K J‖2 ≤ ‖M‖2 + ‖K‖2‖J‖2, (3.40)

which together with the estimate (3.38) gives

‖J‖2 ≤ ‖M‖2

1 − ‖K‖2
≤

(
1 + ε log

1

ε

)
‖M‖2 for ε � 1. (3.41)

3.2.5. Estimate of ‖M‖2

We proceed to find an estimation for ‖M‖2. First, we prove that the kernel
satisfies the identity ∫ π

0
K (u, v) cos

v

2
dv = 0, for all u. (3.42)

Indeed, by changing the order of summation and integration, we obtain∫ π

0
K (u, v) cos

v

2
dv = 1

π

∞∑
n=1

cos
(

n+1
2

)
u

n

∫ π

0
cos

(
n + 1

2

)
v cos

v

2
dv

= 1

2π

∞∑
n=1

cos
(

n+1
2

)
u

n

∫ π

0
(cos(n + 1)v + cos nv) dv

= 0. (3.43)
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Eqs. (3.23), (3.35), and (3.42) imply that

M(u) =
√

2

π

(
2R2

3
+ b0

)∫ ε

0
K (u, v) cos

v

2
dv. (3.44)

The estimate (3.38) gives

‖M‖2 ≤
√

2

π

(
2R2

3
+ b0

)
‖K‖2

√
ε ≤

√
15

π2

(
2R2

3
+ b0

)
ε3/2 log

1

ε
. (3.45)

Combining the estimates (3.41) and (3.45), we obtain for ε � 1

‖J‖2 ≤ 4

π2

(
2R2

3
+ b0

)
ε3/2 log

1

ε
=

(
2R2

3
+ b0

)
O(ε3/2 log ε). (3.46)

3.2.6. The Second Term and Error Estimate

The Cauchy-Schwartz inequality implies that
√

2π

ε + sin ε

∣∣∣∣
∫ ε

0
J (u) cos

u

2
du

∣∣∣∣ ≤
(

2R2

3
+ b0

)
ε log

1

ε
, (3.47)

for ε � 1, which together with (3.36) gives

b0 = π R2

3ε
(1 + O(ε log ε)) = |�|

4a
(1 + O(ε log ε)) . (3.48)

To obtain the explicit expression for the term O(ε log ε), we write the Fredholm
integral Eq. (3.34) as

(I + K )J = M. (3.49)

The estimate (3.38) implies that ‖K‖2 < 1 for sufficiently small ε, hence

J = M + O (‖K‖2‖M‖2) . (3.50)

Thus, using Eq. (3.44) and the estimates (3.38) and (3.45), we write the last term
in equation (3.36) as∫ ε

0
J (u) cos

u

2
du =

∫ ε

0
M(u) cos

u

2
du + O (ε‖K‖2‖M‖2)

=
√

2

π

(
b0 + 2R2

3

) [∫ ε

0

∫ ε

0
K (u, v) cos

u

2
cos

v

2
du dv + O

(
ε3 log2 ε

)]
.

(3.51)

Eq. (3.28) gives the double integral as∫ ε

0

∫ ε

0
K (u, v) cos

u

2
cos

v

2
du dv = 1

π
ε2 log

1

ε
+ O(ε2),



456 Singer et al.

hence √
2π

ε + sin ε

∫ ε

0
J (u) cos

u

2
du =

(
b0 + 2R2

3

) [
ε log

1

ε
+ O(ε)

]
.

Now it follows from Eq. (3.36) that

b0 = |�|
4a

[
1 + ε log

1

ε
+ O(ε)

]
. (3.52)

3.3. The MFPT

Using the explicit expression (3.52), we obtain the MFPT from the center of
the ball as

v

∣∣∣∣
r=0

= u

∣∣∣∣
r=0

+ R2

6
= b0 + R2

6
= |�|

4a

[
1 + ε log

1

ε
+ O(ε)

]
. (3.53)

This is also the averaged MFPT for a uniform initial distribution,

Eτ = 1

|�|
∫ 2π

0
dφ

∫ π

0
sin θ dθ

∫ R

0
v(r, θ )r2 dr = |�|

4a

[
1 + ε log

1

ε
+ O(ε)

]
.

4. SUMMARY AND APPLICATIONS

The narrow escape problem for a Brownian particle leads to a singular perturbation
problem for a mixed Dirichlet-Neumann (corner) problem with large Neumann
part and small Dirichlet part of the boundary. The corner problem, that arises
in classical electrostatics (e.g., the electrified disk), elasticity (punch problems),
diffusion and conductance theory, hydrodynamics, acoustics, and more recently in
molecular biophysics, was solved hitherto mainly for special geometries. In this
paper, we have constructed a leading order asymptotic approximation to the MFPT
in the narrow escape problem for a general smooth domain and have derived a
second term and an error estimate for the case of a sphere. Our derivation makes
Lord Rayleigh’s qualitative observation into a quantitative one. Our leading order
analysis of the general case uses the singularity property of the Neumann function
for a general domain in R

3
. The special case of the sphere is analyzed by a

method developed by Collins and yields a better result. A different approach to
the calculation of the MFPT would be to use singular perturbation techniques.
The vanishing escape time at the boundary would then be matched to the large
outer escape time of order ε−1 by constructing a boundary layer near the boundary.
The analysis of the MFPT to a small window at an isolated singular point of the
boundary, such as at corners, cusps, and so on is postponed to a future paper.
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The equilibration time is the reciprocal of the first eigenvalue of the Neumann
problem in this domain, which depends on the MFPT of a Brownian motion
in each chamber to the narrow connecting channel. The first eigenfunction is
constructed by piecing together the eigenfunctions of the narrow escape problem
in each chamber and in the channel so that the function and the flux are continuous
across the connecting interfaces. It was assumed in Ref. 7 that the flux profile
in the connecting hole was uniform. The structure of the flux profile, which is
proportional to (a2 − ρ2)−1/2, was observed by Rayleigh in 1877.(16) Rayleigh first
assumed a radially uniform profile of flux and then refined the profile of flux going
through the channel, allowing it to vary with the radial distance from the center of
the cross section of the channel, so as to minimize the kinetic energy. A calculation
of the equilibration time was carried out in Ref. 43 by solving the same problem,
and gave a result that differs from that of Ref. 16, which was obtained by heuristic
means, by less than two percent. A different approximation, based on the Fourier-
Bessel representation in the pore, was derived in Ref. 21. Another application of
the narrow escape problem concerns ionic channels,(1) and particularly particle
simulations of the permeation process(2−6) that capture much more detail than
continuum models. Up to now, computer simulations are inefficient because an
ion takes so long even to enter a channel and then so many of the ions return from
where they came. From the present analysis, it becomes clear why ions take so long
to enter the channel. According to (1.2) the mean time between arrival of ions at the
channel is

τ̄ = Eτ

N
= 1

4DaC
, (4.1)

where N is the number of ions in the simulation and C is their concentration.
A coarse estimate of τ̄ at the biological concentration of 0.1 Molar, channel
radius a = 20 Å, diffusion coefficient D = 1.5 × 10−9 m2/sec is τ̄ ≈ 1n sec. In
a Brownian dynamics simulation of ions in solution with time step which is 10
times the relaxation time of the Langevin equation to the Smoluchowski (diffusion)
equation at least 1000 simulation steps are needed on the average for the first ion
to arrive at the channel. It should be taken into account that most of the ions that
arrive at the channel do not cross it.(44)

The narrow escape problem comes up in problems of the escape from a
domain composed of a big subdomain with a small hole, connected to a thin
cylinder (or cylinders) of length L . If ions that enter the cylinder do not return to
the big subdomain, the MFPT to the far end of the cylinder is the sum of the MFPT
to the small hole and the MFPT to the far end of the narrow cylinder. The latter
can be approximated by a one-dimensional problem with one reflecting and one
absorbing endpoint. If the domain has a volume |�|, the approximate expression
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for the MFPT is

Eτ ≈ |�|
4εD

+ L2

2D
. (4.2)

This method can be extended to a domain composed of many big subdomains
with small holes connected by narrow cylinders. The case of one sphere of volume
|�| = 4π R3

3 , with a small opening of size ε connected to a thin cylinder of length L
is relevant in biological micro-structures, such as dendritic spines in neurobiology.
Indeed, the mean time for calcium ion to diffuse from the spine head to the parent
dendrite through the neck controls the spine-dendrite coupling.(9,10) This coupling
is involved in the induction of processes such as synaptic plasticity.(11) Formula
(4.2) is useful for the interpretation of experiments and for the confirmation of the
diffusive motion of ions from the spine head to the dendrite.

Another significant application of the narrow escape formula is to provide a
new definition of the forward binding rate constant in micro-domains.(12) Indeed,
the forward chemical constant is really the flux of particles to a given portion of
the boundary, depending on the substrate location. Up to now, the forward binding
rate was computed using the Smoluchowski formula, which corresponds to the
absorption flux of particles in a given sphere immersed in an infinite medium. The
formula applies when many particles are involved. But to model chemical reactions
in micro-structures, where a bounded domain contains only a few particles that
bind to a given number of binding sites, the forward binding rate,

kforward = 1

τ̄
,

has to be computed with τ̄ given in Eq. (4.1).
Finally, we note that the results can be generalized to higher dimensions in a

straightforward manner.

APPENDIX A: Estimate of ‖K‖2

A.1. Estimate of the Kernel

A rough estimate of the kernel, for 0 ≤ u, v ≤ ε, is obtained from Eq. (3.28) as

K 2(u, v) ≤ 5

4π2
cos

1

2
(v + u)

(
log 2

∣∣∣∣sin
1

2
(v + u)

∣∣∣∣
)2

+ 5

4π2
cos

1

2
(v − u)

(
log 2

∣∣∣∣sin
1

2
(v − u)

∣∣∣∣
)2

.
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Furthermore,∫ ε

0
cos

1

2
(v + u)

(
log 2

∣∣∣∣sin
1

2
(v + u)

∣∣∣∣
)2

du =
∫ 2 sin 1

2 (v+ε)

2 sin 1
2 v

(log x)2 dx

≤ 2

(
sin

1

2
(v + ε) − sin

1

2
v

) (
log 2

∣∣∣∣sin
1

2
v

∣∣∣∣
)2

≤ ε cos
1

2
v

(
log 2

∣∣∣∣sin
1

2
v

∣∣∣∣
)2

and ∫ ε

0
ε cos

1

2
v

(
log 2 sin

1

2
v

)2

dv = ε

∫ 2 sin 1
2 ε

0
(log x)2 dx ≤ 2ε2 log2 ε.

Similarly, ∫ ε

0
cos

1

2
(v − u)

(
log

∣∣∣∣2 sin
1

2
(v − u)

∣∣∣∣
)2

dv

=
∫ 2 sin 1

2 u

0
(log x)2 dx +

∫ 2 sin 1
2 (ε−u)

0
(log x)2 dx

≤ 2u log2 u + 2(ε − u) log2(ε − u).

It follows that∫ ε

0

(
2u log2 u + 2(ε − u) log2(ε − u)

)
du ≤ 4ε2 log2 ε,

because u log u is an increasing function in the interval 0 ≤ u ≤ e−2. Altogether,
we obtain

‖K‖2 ≤
√

30

2π
ε log

1

ε
for ε � e−2, (A.1)

which is (3.38).

APPENDIX B: Elliptic Hole

We present here, for completeness, Lure’s(22) solution to the integral Eq. (2.15) in
the elliptic hole case. We define for y = (x, y)

L( y) = 1 − x2

a2
− y2

b2
(b ≤ a)

and introduce polar coordinates in the ellipse ∂�a

x = y + (ρ cos θ, ρ sin θ ),
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with origin at the point y. The integral in Eq. (2.15) takes the form∫
∂�a

g0(x)

|x − y| d Sx =
∫ 2π

0
dθ

∫ ρ0(θ)

0

g̃0 dρ√
L(x)

, (B.1)

where ρ0(θ ) denotes the distance between y and the boundary of the ellipse in the
direction θ . Expanding L(x) in powers of ρ, we find that

L(x) = 1 − (x + ρ cos θ )2

a2
− (y + ρ sin θ )2

b2
= L( y) − 2φ1ρ − φ2ρ

2, (B.2)

where φ1 = x cos θ
a2 + y sin θ

b2 and φ2 = cos2 θ
a2 + sin2 θ

b2 . Solving the quadratic Eq. (B.2)
for ρ, taking the positive root, we obtain

ρ(x) = 1

φ2

{
−φ1 + [

φ2
1 + φ2 (L( y) − L(x))

]1/2
}

, (B.3)

therefore, for fixed y and θ ,

dρ(x) = −1

2

d L(x)[
φ2

1 + φ2 (L( y) − L(x))
]1/2

, (B.4)

and the integral takes the form∫
∂�a

g0(x)

|x − y| d Sx =
∫ 2π

0
dθ

∫ L( y)

0

1

2

d L(x)[
φ2

1 + φ2 (L( y) − L(x))
]1/2

g̃0√
L(x)

=
∫ 2π

0
dθ

∫ L( y)

0

1

2

g̃0 dz√
φ2

1 + φ2z
√

L( y) − z
.

Substituting s = z
L( y) and setting ψ = φ2

1
φ2 L( y) , we find that

∫
∂�a

g0(x)

|x − y| d Sx =
∫ 2π

0
dθ

g̃0

2
√

φ2

∫ 1

0

ds√
ψ + s

√
1 − s

=
∫ 2π

0
dθ

g̃0

2
√

φ2
2 arctan

√
ψ + s

1 − s

∣∣∣∣
1

0

=
∫ 2π

0

g̃0

2
√

φ2

(
π − 2 arctan

√
ψ

)
dθ

=
∫ 2π

0

g̃0 dθ

2

√
cos2 θ

a2
+ sin2 θ

b2


π − 2 arctan

x cos θ

a2
+ y sin θ

b2√
cos2 θ

a2
+ sin2 θ

b2
L( y)


 .
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The arctan term changes sign when θ is replaced by θ + π , therefore its integral
vanishes, and we remain with

∫
∂�a

g0(x)

|x − y| d Sx = π g̃0

2

∫ 2π

0

dθ√
cos2 θ

a2
+ sin2 θ

b2

= 2πbg̃0

∫ π

2
0

dθ√
1 − a2 − b2

b2
sin2 θ

= 2πbg̃0 K (e), (B.5)

where K (·) is the complete elliptic integral of the first kind, and e is the eccentricity
of the ellipse

e =
√

1 − b2

a2
, (a > b). (B.6)

We note that the integral (B.5) is independent of y, so we conclude that (2.21) is
the solution of the integral Eq. (2.15).

APPENDIX C: A Pathological Example

We have derived an integral equation for the leading order terms of the flux and
the MFPT in the case where the MFPT increases indefinitely as the relative area
of the hole decreases to zero. However, the MFPT does not necessarily increase
to infinity as the relative area of the hole decreases to zero. This is illustrated
by the following example. Consider a cylinder of length L and radius a. The
boundary of the cylinder is reflecting, except for one of its bases (at z = 0,
say), which is absorbing. The MFPT problem becomes one dimensional and its
solution is

v(z) = Lz − z2

2
. (C.1)

Here there is neither a boundary layer nor a constant outer solution; the MFPT
grows gradually with z. The MFPT, averaged against a uniform initial distribution
in the cylinder, is Eτ = L2

3 and is independent of a, that is, the assumption that
the MFPT becomes infinite is violated.
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